

SyntriX AHF™

480V Installation Guide

MTE LLC

SAFETY INSTRUCTIONS

Thank you for choosing SyntriX Active Harmonic Filter (AHF) module. Please read the safety instructions carefully before using them and ensure that the unit is operated according to the instructions in this manual. The safety instructions contain important information, which ensure that you can safely and properly use the product and prevent personal injury or property damage. Please keep this manual accessible near the unit so that users can easily reference this information.

This manual uses the following illustrations and symbols to highlight important safety information. Please ensure that you are very familiar with these procedures and follow these instructions carefully.

DANGER

Failure to comply with the instructions or improper operation may cause serious electric injury and can be fatal.

WARNING

Failure to comply with the instructions or improper operation may cause wound.

CAUTION

Failure to comply with the instructions or improper operation may cause personal injury and/or damage to the equipment.

SAFETY PRECAUTIONS

DANGER

Do not expose it to where rain or moisture is heavy, and keep it away from combustible liquid, gas or explosive.

DANGER

To avoid high voltage risks, the discharge time of DC capacitors should be above 4 hours. Make sure the operation is performed after full discharge.

WARNING

Installation must be done by well-trained and qualified personnel in a controllable environment.

WARNING

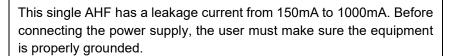
Any maintenance work must be carried out by qualified technical personnel; all power must be cut off before maintenance.

CAUTION

Reserve enough space around the equipment, to maintain good ventilation and easy access for maintenance and operation.

CAUTION

Read the user manual carefully before connecting the power and keep it easily accessible for future reference.



Do not open the output circuit of a current transformer (CT) unless the circuit the CT monitoring is deenergized or the CT has been physically removed from the circuit. This includes not removing any connections from, or the connectors themselves from P1 or P2 of the CT Interface boards inside the AHFs. Opening the output circuit of a CT could result in very high voltage that can cause the CT to fail and represent an extremely dangerous condition to personnel. Exception: If CTs are first connected to a shorting terminal block prior to being wired to an AHF, and shorts are applied across each CT's pair of output wires on that block, then CT related wiring continuing from the block to the AHF may be opened without harm.

WIRING PRECAUTIONS

WARNING

When choosing RCCB or RCD equipment, the leakage current of the module should be considered.

The RCCB chosen should not be sensitive to the unidirectional DC pulse (Class A) and the transient pulse.

Please note that the leakage current of the load will also flow through RCCB or RCD; the grounding of the device must meet the local electrical regulations

WARNING

Compensation capacity and current-carrying capacity must be taken into full consideration for wiring.

CAUTION

The cables connected to the power terminals must be connected to a circuit breaker or other protective devices and the capacity of protective devices should match the capacity of Active Harmonic Filter.

PRECAUTIONS FOR USE

CAUTION

The AHF is used to mitigate power harmonics, improve power factors, and compensate three-phase unbalance. The capacity of AHF should be selected in accordance with harmonic content.

CAUTION

The AHF must be used with external current transformers.

CAUTION

To ensure AHF has good reliability and to avoid overheating, do not block or cover the air inlet/outlet.

CAUTION

No corrosive gas and conductive dust is allowed in the working environment.

CAUTION

STORAGE PRECAUTIONS

CAUTION

Seal AHF with its original packing materials in case of damage caused by rat invasion.

CAUTION

CAUTION

Improper storage conditions, such as humidity, will cause moisture and mildew on PCB and other components; halogen gas will corrode electrolytic capacitors; sulfur-containing gas will corrode copper and other semiconductors and resistance components;

CAUTION

If the module is not used for > 3 months, it should not be opened (sealed bag) or should be resealed with a sealed bag after opening; the temperature for long-term storage should not exceed 40 °C.

CAUTION

After 1-3 years of storage in a sealed environment with a temperature not exceeding 40 $^{\circ}$ C, the first time you turn on the power without turning it on, keep it on for more than 1 hour to activate the internal electrolytic capacitor.

CAUTION

If the module is not sealed, depending on the harsh environment (humidity, temperature, halogen, sulfur, ammonia, salt spray), more than 3 months, the internal components of the module have been corroded or mildewed or damp, when the module is powered on, the risk of damaging the module(s).

Note: the module itself cannot work in halogen, sulfur, ammonia, and heavy salt spray environments, such as seaside, chemical plants, conductive dust, etc..

CAUTION

Normal temperature (such as normal indoor environment, temperature < 40 $^{\circ}$ C, humidity < 70%), more than 6 months to 1 year, according to the first power-on method;

CAUTION

High temperature, humidity is not too high ($40\sim70$ °C, such as arid desert areas), PCB is not moldy, etc. After more than 3 months, power up the unit like an initial power up.

CAUTION

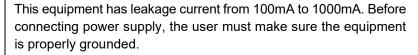
If the humidity is high for a short period of time (1~2 weeks), check that there is no mildew, and that the PCBs are dry.

CAUTION

Unsealed storage creates a high risk of severe module damage.

PRE-INSTALLATION NOTICE

CAUTION


The installation, assembly and power on of the module must be operated by qualified personnel or supervised by qualified personnel on-site.

CAUTION

Before wiring or connecting terminals, as a precaution, make sure that the input of the SyntriX AHF has been turned off to avoid accidents.

CAUTION

When choosing RCCB or RCD equipment, the leakage current of the module should be considered.

The RCCB chosen should not be sensitive to the unidirectional DC pulse (Class A) and the transient pulse.

Please note that the leakage current of the load will also flow through RCCB or RCD; the grounding of the device must meet National Electrical Code (NEC) or other local regulations

CAUTION

MTE SyntriX AHF should be installed in a clean, well-ventilated indoor environment.

ENVIRONMENT REQUIREMENTS

Before proceeding, it is important to take note of the preconditions required for the environment.

ATTENTION

For rack mount units, cold air enters AHF through the front of the module and hot air is discharged through the rear grid of the module.

6

For wall mount units cold air enters through the bottom of the module and hot air is discharged through the top of the module.

Do not block the ventilation holes on either side and clean the front side every 3 months to prevent blockage by dust.

ATTENTION

The ambient temperature at the time of installation must be -10 $^{\circ}$ C \sim 40 $^{\circ}$ C, or derate.

ATTENTION

Ensure that there is no dust or corrosive/explosive gases in the installation environment.

ATTENTION

The AHF MUST NOT be installed in an environment with strong magnetic fields, nuclear radiation or high-power RF noise.

ATTENTION

The relative humidity in the environment should be lower than 95%. The presence of steam or condensation may result in permanent damage to the device or endanger personal safety.

ATTENTION

The installation altitude should be lower than 1500m. If it is over 1500m, the equipment must be derated 1% per 100m increase in altitude.

ATTENTION

Avoid severe physical shock, violent impact and large angle tilting in the installation process as this may cause damage and operational failure of the unit.

ATTENTION

During installation, leave sufficient operating space for cooling, maintenance and operation.

TABLE OF CONTENTS

SAFETY INSTRUCTIONS	1
SAFETY PRECAUTIONS	1
WIRING PRECAUTIONS	2
PRECAUTIONS FOR USE	3
STORAGE PRECAUTIONS	4
PRE-INSTALLATION NOTICE	5
ENVIRONMENT REQUIREMENTS	6
TABLE OF CONTENTS	8
1.0 UNBOXING	
2.0 WIRING	
2.1 SINGLE WALL MOUNTED	
2.2 MULTIPLE WALL MOUNTED	
2.3 SINGLE RACK MOUNTED	14
2.4 MULTIPLE RACK MOUNTED	15
2.5.1 POWER CABLE	17
2.5 CABLE	17
2.5.1.1 POWER CABLE SELECTION	17
2.5.1.2 CT CABLE CONNECTION	17
2.6 SINGLE MODULE WIRE DIAGRAM	18
3.0 Programing	18
3.1 OPERATION MODE AND CT LOCATION	19
3.2 COMP MODE, CT RATIO AND TARGET VOLTAGE	20
3.3 EXTERNAL PASSIVE FILTER	21
3.4 HARMONIC COMP SETUP	22
4.0 Power ON the Unit	22
Appendix	23
A) Wiring Terminal	23
B) 7-INCH HMI INTRODUCTION	24
'INFO' ILLUSTRATE	26
RECORD INTRODUCTION	28
PARAMETER SETTING INTRODUCTION	29
PARAMETER SETTING	33
HELP	34
ABOUT	34
DOCUMENT REVISION	35

1.0 UNBOXING

NOTICE

All the modules have dust-proof stickers to protect the module from the dust while storing. The dust-proof stickers must be removed before the module is installed at site.

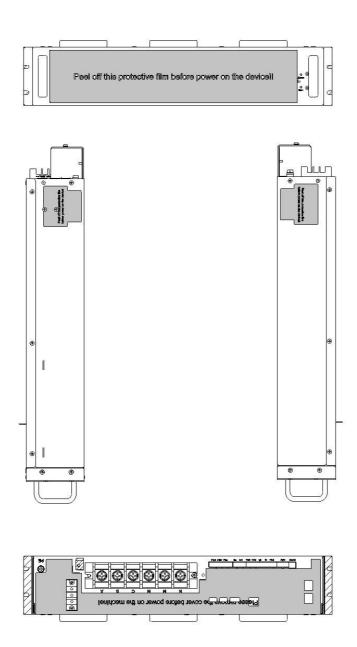
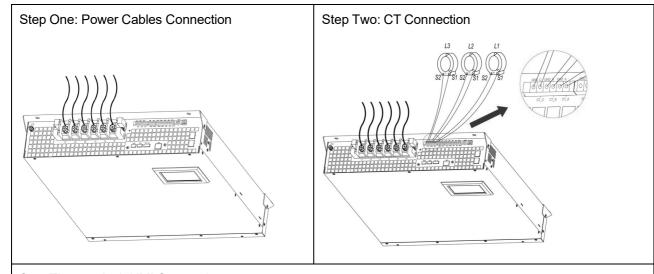
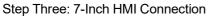
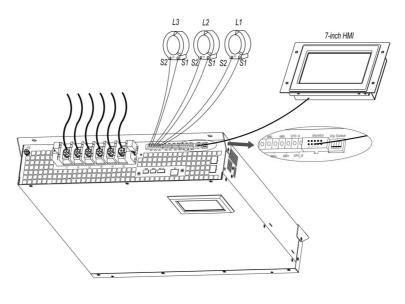


Figure 2- 1 Dust-proof sticker

2.0 WIRING

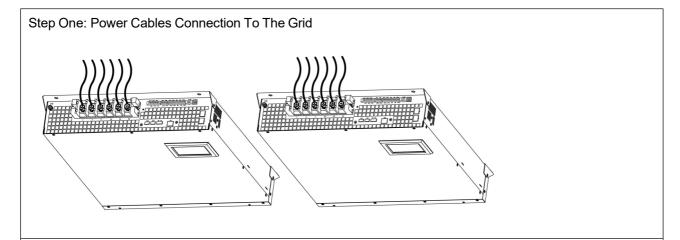


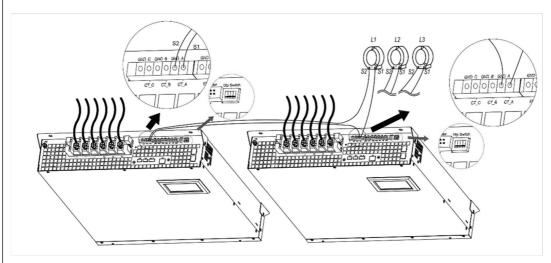

DANGER

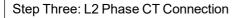

Before connecting the cables or electronics, please be sure to cut off the input power of the AHF device to avoid accidents.

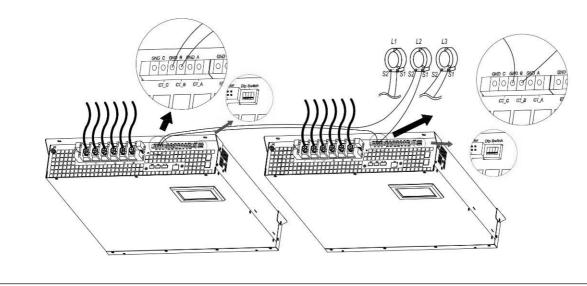
2.1 SINGLE WALL MOUNTED

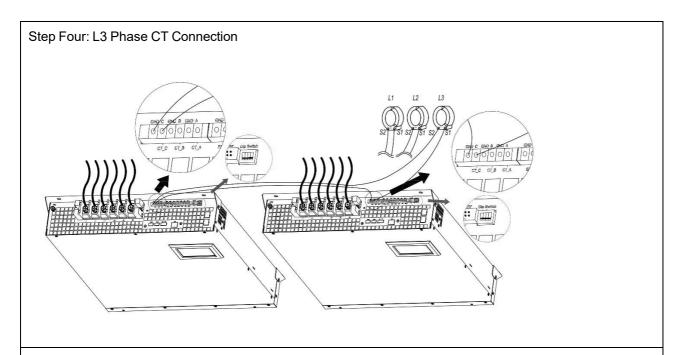
Table 2- 1 Installation Steps of MTE Single Wall-mounted Module



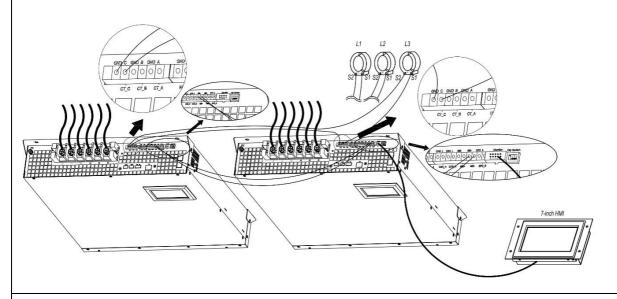

Note: If user need to use 7-inch Human-machine interface (HMI) to control the module, which need to operate as STEP THREE;

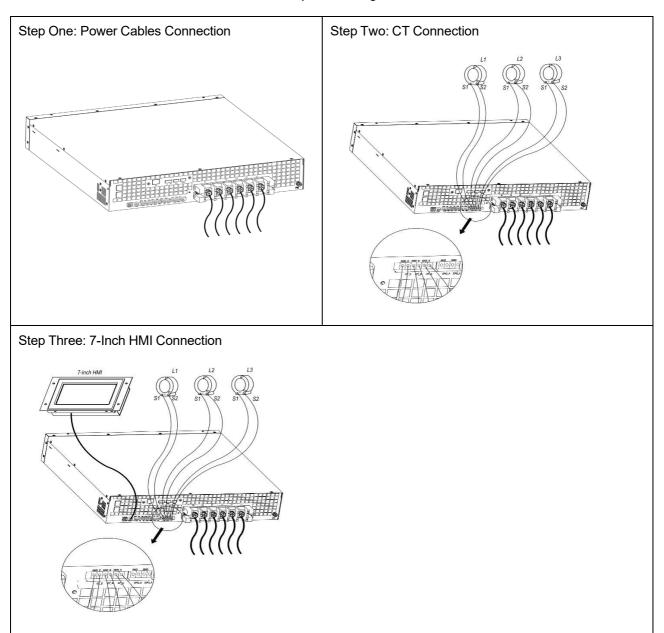

2.2 MULTIPLE WALL MOUNTED


Table 2- 2 Installation Steps of MTE Multiple Wall-mounted Modules

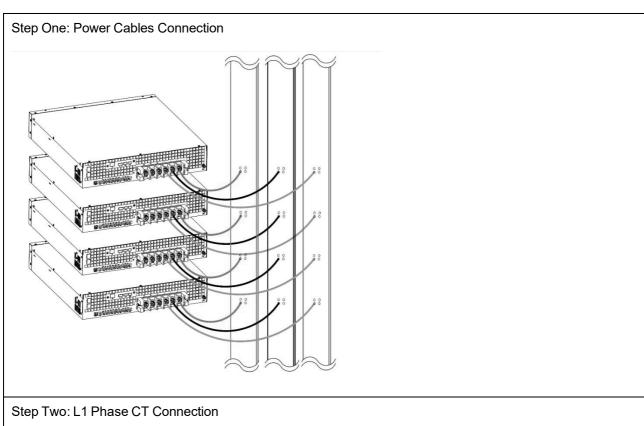


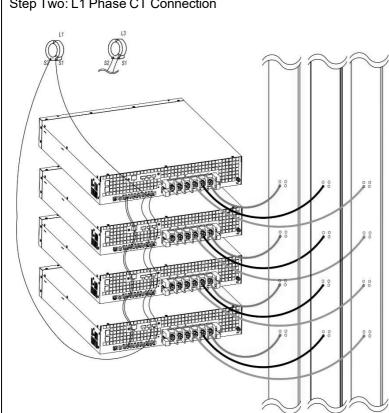
Step Two: L1 Phase CT Connection

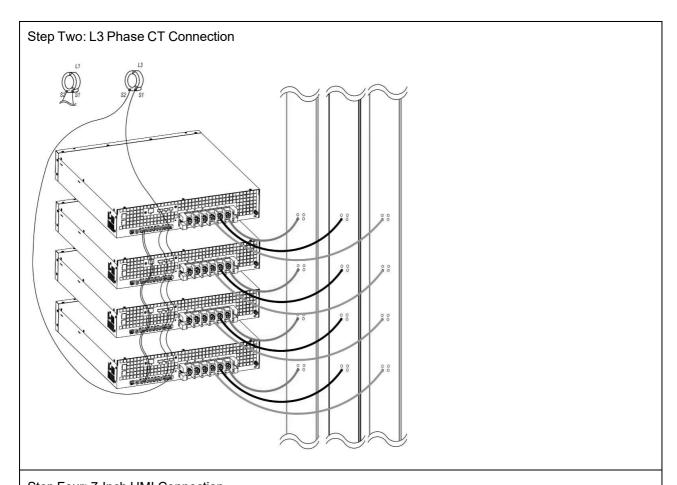




Note: If user need to use 7-inch Human-machine interface (HMI) to control the module, which need to operate as STEP FIVE;


2.3 SINGLE RACK MOUNTED


Table 2- 3 Installation Steps of MTE Single Rack-mounted Module



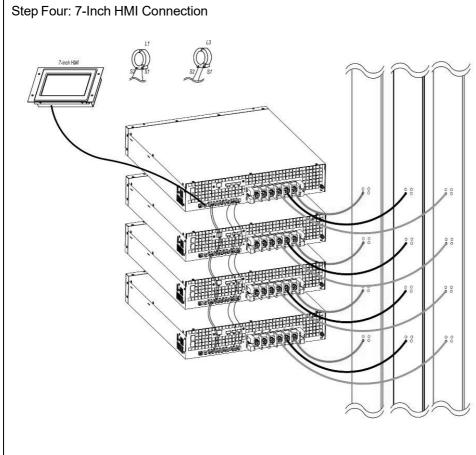

2.4 MULTIPLE RACK MOUNTED

Table 2- 4 Installation Steps of MTE Multiple Rack-mounted Modules

2.5 CABLE

2.5.1 POWER CABLE

CAUTION

For 3P3W system only needs to connect L1, L2 and L3;

Power cables are electrical cables that are used to transmit electrical power from a power source to a device or equipment. They are typically made of copper or aluminum conductors and are insulated to prevent electrical shock and short circuits. Power cables come in various sizes and configurations, depending on the amount of power that needs to be transmitted and the distance between the power source and the device or equipment.

2.5.1.1 POWER CABLE SELECTION

If you need a clear power cable selection, please refer to Appendix VIII 'CABLE SIZING', where we have recommended the appropriate sizes for you. You can use this as a reference to select the proper power cable for your specific application.

2.5.1.2 CT CABLE CONNECTION

CAUTION

An open circuit of CT secondary polarity is not allowed.

NOTICE

MTE module supports 3P3W according to circuit calculation, the 3P3W system only needs two CTs connect to L1 and L3.

NOTICE

To ensure current sharing between the modules, such mode of connection requires the same Cable length from S1 and S2 to the two module signal interfaces. Generally, the parallel cable should not be more than 15m in length. If the parallel operation cable with a length of over 30m is required, please see the introduction of Appendix VII 'CT VA BURDEN'.

2.6 SINGLE MODULE WIRE DIAGRAM

CT CONNECTIS ON THE SUPPLY SIDE [Closed Loop Configuration]

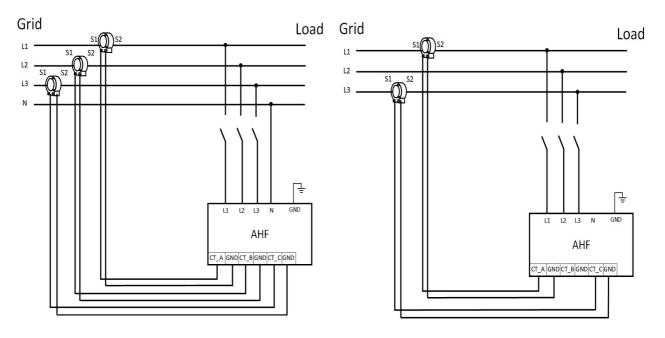
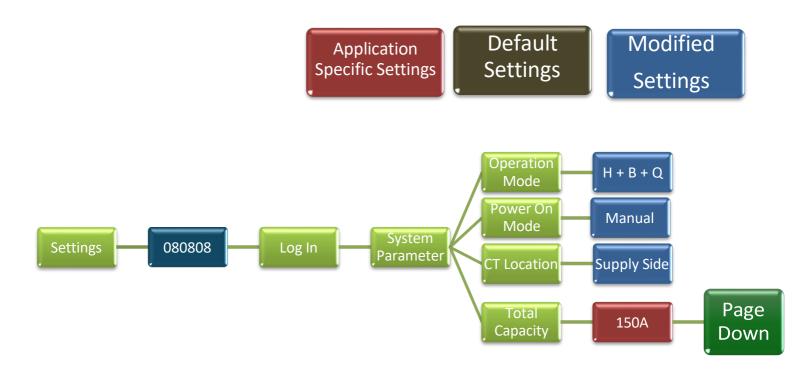
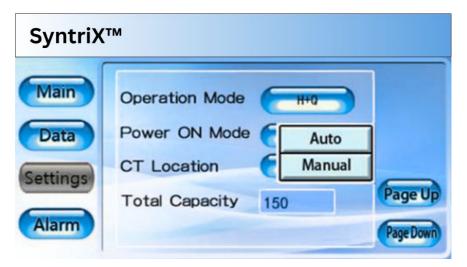


Figure 2- 14 3-Phase 4-Wiring System

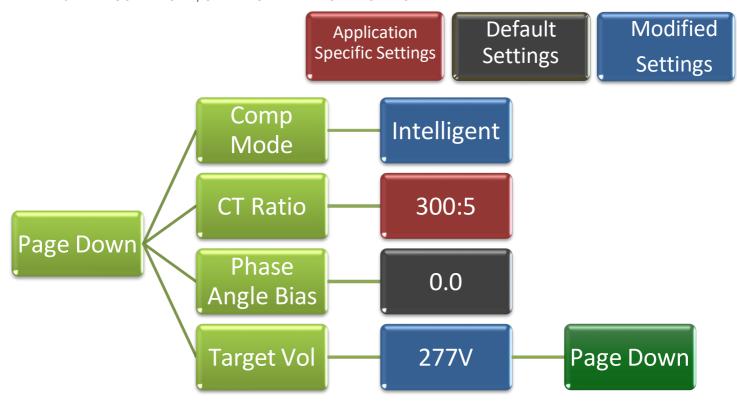

Figure 2- 15 3-Phase 3-Wiring System

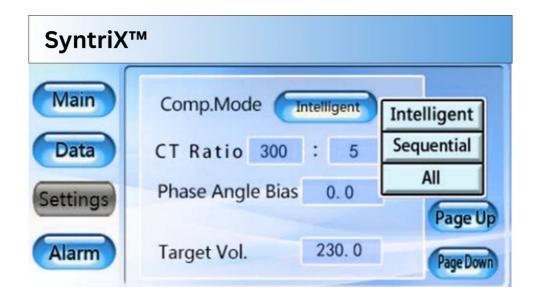

3.0 Programing

Set basic parameters

- Voltage
 - *Target Vol: L-N = 277V*
 - o PT Ratio: 1 (No voltage stepdown)
- CT ratio
 - o Depends on CT used
- Comp Mode
 - o Intelligent
- Input Freq
 - o 60Hz
- Operation Mode
 - \circ H+P+Q
- Power on mode
 - Manual

3.1 OPERATION MODE AND CT LOCATION

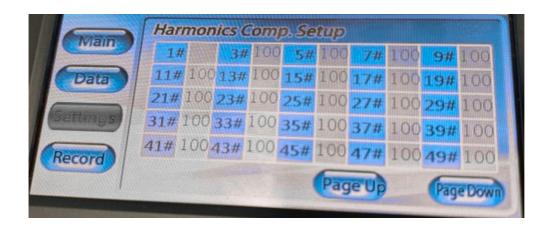




- Log Into Settings with the "080808" Password
- Change Operations Mode to H+B+Q
- Change Power ON Mode to Manual
- Change CT Location to Supply Side

18

3.2 COMP MODE, CT RATIO AND TARGET VOLTAGE


- Set Comp Mode to Intelligent
- · Set CT Ratio as labeled on CT's
- Set Target Volt to 277

3.3 EXTERNAL PASSIVE FILTER Default Modified Application Specific Settings Settings Settings Ext. 0 **Passive** 1. PT THDU 0. Page Unbalanc 0.0 е Deratin 1.0 Page

• Set Ext Passive Filter to 0

3.4 HARMONIC COMP SETUP

- Set ALL odd Harmonics to 100
- Set the 2nd Harmonic to 100

4.0 Power ON the Unit

- Power ON the Unit (Main>Power ON>Enter)
- Intelligent mode takes about 10 minutes to fully reduce the ThiD

Appendix

A) Wiring Terminal

The wiring terminal is located at the rear side of the module, including power terminal, CT terminal and communication terminal.

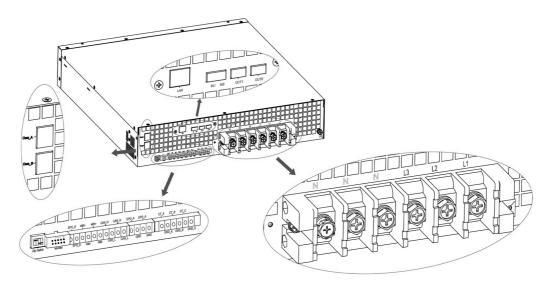


Figure 1-6 MTE SyntriX AHF Terminal

Table 1-1 MTE SyntriX AHF Terminal Definition

	COM_A	400		
(COM_B	422 communication port used for multiple module parallel		
	Dip Switch	Communication address setting		
	Monitor	7-inch HMI connecting port		
	EPO_B			
	EPO_A	EPO button connecting port		
Signal terminal	485+			
Signal terminal	485-	485 communication port used for communication between		
	485+	module and 7-inch HMI		
	485-			
	CAN_H			
	CAN_L	CAN communication port used when SVGD or 422		
	CAN_H	communication is needed		
	CAN_L			

	EPO_A		
	GND	To paralleled the EPO signal of each module	
	EPO_A		
	GND		
	CT_A	Connected to S1 of phase L1 CT	
	GND_A	Connected to S2 of phase L1 CT	
	CT_B	Connected to S1 of phase L2 CT	
	GND_B	Connected to S2 of phase L2 CT	
	CT_C	Connected to S1 of phase L3 CT	
	GND_C	Connected to S2 of phase L3 CT	
	LAN (optional)		
	IN1 (optional)	Dry contact board terminals (optional), including 1 Ethernet	
	IN2 (optional)	port, 2 input dry contact and 2 output dry contacts, the detailed introduction please refer to Appendix III.	
	OUT1 (optional)	introduction please relei to Appendix III.	
	OUT2 (optional)		
	N		
	N		
	N	Power cable connection	
Power terminal	L3	Power capie connection	
	L2		
	L1		
	PE	The grounding terminal of a device is an important	
		component that ensures electrical safety.	

B) 7-INCH HMI INTRODUCTION

MTE 7-inch HMI is typically used to control multiple modules, making management more convenient. It features a full touch screen and a colorful visual display for monitoring.

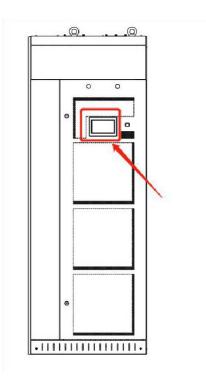
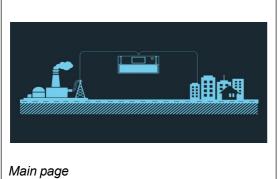



Figure 3-2 The position of 7-inch HMI

NOTICE

Ensure and connections are correct, safe and follow the manufacturer's instructions.

When the module connected with power that the HMI will initialize.

In main page, user can see the performance directly.

. .

There's 7 parts in MTE 7-inch HMI, 'Main', 'Info.', 'Records', 'Settings', 'Help', 'About' and'Back'

Main Screen with drop-down selection

Note: click on

to get a drop-down selection

'INFO' ILLUSTRATE

Basic Interface

The 'BASIC' can be real-time observe the data of RMS(A), PF, THDi(%), Vol.(V), Fre.(Hz) and THDu(%) of Grid Current, Grid Voltage and Load Current, and RMS(A) and Load rate(%) of Compensate Current.

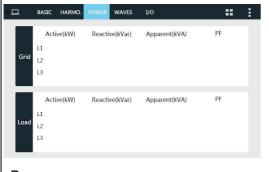
"Grid Curr." means the current after compensation. For example, PF in Grid Curr. refers to the compensated PF value

"Grid Volt." means the voltage of module power access point.

"Load Curr." means the current before compensation. For example, THID (%) in Load Curr. refers to the before compensated THID(%) value.

"Comp Curr." means the current outputted from module.

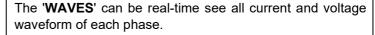
"RMS": root mean square of current.


"Lode Rate": Ratio of Comp power to rated power of Module.

The 'HARMO.' can be real-time observed in each phase voltage and current harmonic of grid side and load side.

'Grid', which is the green cylinder, represents the grid harmonic spectrum (after compensation).

'Load' that the red cylinder represents harmonic spectrum of the load side (before compensation).


The 'POWER' can be real-time to get the information of Active(kW), Reactive(kW), Apparent(kW) and cosφ of Grid side and Load side.

'**Grid side**' means after compensation. For example, cosφ in Grid Side refers to the compensated cosφ value.

'Load side' means before compensation.

Noted: This $\cos \varphi$ is real PF, not including the reactive power.

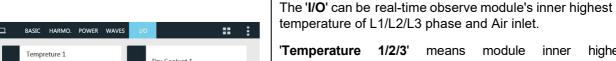
Power

Display four kinds of waveforms, Comp. I L1/L2/L3, Grid I L1/L2/L3, Grid V L1/L2/L3 and Load I L1/L2/L3. Click

, pop-up

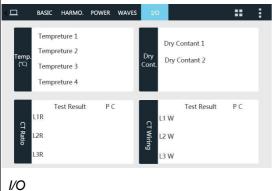
menu, select the waveform displayed in the color.

'Comp. I L1/L2/L3' refers to the L1/L2/L3 phase compensate current waveform, each time choose one phase.


'Grid. I L1/L2/L3' refers to the L1/L2/L3 phase current waveform after compensating, each time choose one phase.

'Grid. V L1/L2/L3' refers to the L1/L2/L3 phase voltage waveform after compensating, each time choose one phase.

'Load. I L1/L2/L3' refers to the L1/L2/L3 phase current waveform beform compensating, each time choose one phase.


Waves

temperature of L1/L2/L3 phase (dry contact is useless).

'Temperature 4' means the temperature of Air inlet.(This function is only for PRO version module)

'Dry Content 1/2' means The state of the dry contact is normal when the dry contact board is externally connected.

RECORD INTRODUCTION

Click "Record" on the main menu to enter the record interface.

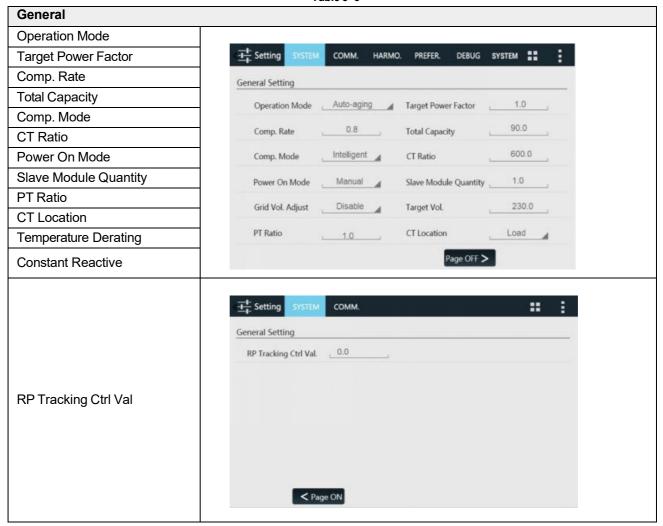
Active

MTE's monitoring system has a comprehensive alarm function that displays all real-time alarm information in a user-friendly manner. This feature captures and reports critical events such as system faults, voltage abnormalities, communication disruptions, and other related issues. Users can easily customize alarm thresholds and notification settings through the system configuration, ensuring that they receive alerts of significant events without being bombarded with irrelevant information. The monitoring system's intuitive design ensures that users can quickly access and analyze data when a potential issue occurs, promoting proactivity in addressing any performance or efficiency concerns and ultimately reducing downtime and maintenance costs.

History

MTE's historical alarm function in monitoring displays all alarms that have occurred since the system was installed, with a maximum record of 500 alarms. This feature allows users to review past alarms and identify any recurring issues or patterns. It is a useful tool for troubleshooting and improving system performance.

Operation


The operation record function in MTE monitoring system records all the operations performed on the system, making it easy to trace back and review. This feature ensures that all actions taken on the system are documented, providing a comprehensive audit trail for future reference.

PARAMETER SETTING INTRODUCTION

The "General Settings" can be accessed using the '080808' password and is suitable in most applications for system commissioning by the user.

Table 3-5

Table 3- 6 Parameter Introduction

Parameter	Meaning and Function of Parameter	Options	Default setting	Unit
	There are 13 working modes applicable to AHF			
	H: Harmonic compensation	Harmonic		
	Q: Reactive power compensation	Comp.		
	B: Balance compensation	Q+H		
	Auto-aging: The module outputs current according to the set	H+Q		
	compensation rate, and tests whether the module can output normally.	Q+H+B		
	Only for factory testing. Users shall be forbidden to use.	H+Q+B		
	Mixed mode: Used for mixed solution, AHF+SVG	Q+B+H	According to	N/A
Operation	(Refer to document <one ahf&svg<="" centralized="" control="" hmi="" td="" to=""><td>Auto-aging</td><td>customer's need</td><td></td></one>	Auto-aging	customer's need	
Mode	Hybrid System> attached for further explanation.)	B+H	need	
		H+B+Q		
	For example: H+Q means harmonic compensation first, then	B+H+Q		
	compensate for the reactive power if there is enough capacity reserved.	H+B		
	H+Q+B means harmonic compensation first, then compensate the reactive power, after that, remaining capacity will be used for	B+Q+H		
	three-phase unbalance compensation.	Mixed Mode		
Target	Set the target value of the grid side power factor.	[-1, 1]	1.0	coch
Power Factor	The setting range: -1~1.	[-1, 1]	1.0	cosф
Total Capacity	Total Capacity setting is the total capacity of the system, either single module or combination of multiple modules.	>0	According to actual capacity	Amps
	Intelligent compensation : Using intelligent Fourier algorithm, the rated capacity can be compensated within five minutes, effectively avoiding resonance.	Intelligent	Intelligent	
Comp. Mode	Sequential compensation : Using Fourier algorithm can quickly compensate for the harmonics of the order to rated capacity.	Sequential All	compensation	N/A
	All compensation : Quickly compensate all harmonics. (not recommended)	All		
CT ratio	The setting value needs to correspond to the actual ratio of external CT. The secondary of CT only can be 5, the setting range: 50~30000.	0 ~30000	According to	Value
	Note: ① 500 means 500:5, other as the same. ② If the CT ratio is 1000:1, then it should be set as "5000".		actual condition	
Power on	Manual : It needs to be started by artificial execution in the monitoring interface.	Manual	Manual	NI/A
mode	Auto : In automatic mode, once the system is connected to power, machine will automatically go on and start working.	Auto.	Manual	N/A
	Setting the total number of modules in parallel, which are controlled by single 7inch HMI.			
Slave	HMI is master, all the modules are slave modules.		The value of	
module quantity	Note: Previous manuals and info were 8, the latest one can up to 16 modules, but the response time will be lower than before if 16 pcs of modules are connected, normally we still recommend 8 modules controlled by one HMI, we will keep improving this function.	1~16 the number of parallel modules		Value

	When the module is connected to the power grid through a transformer, external transformer ratio should be set.			
	For example: 400V systems the ratio is 1:1 (setting = 1.0);			
PT ratio	For step-up transformer is 11000V, then set the ratio as 11000/400 = 27.5. (setting=27.5)	0.1~90	1.0	Value
	Note: ① Only used in medium and high voltage. ② Consulting MTE engineers before changes are made.			
	Source side : CT installation position is closer to the grid transformer side than the power access point of the module.	: Source side		
CT location	VFD side : CT installation position is closer to the load side than the power access point of the module.	Load side	According to actual condition	N/A
	User can choose source or load side to install CT.			
	Disable : When the overheat protection sensors of the module detect the temperature of IGBTs more than 95 °C, the output won't be derated.			
Temperature derating	Enable: The module derating capacity is judged by detecting the IGBT temperature. When the temperature exceeds 95°C and the duration reaches ten minutes, the module will automatically derating 10% of rated capacity. If the temperature still exceeds 95°C and the duration reaches ten minutes, the module will automatically derated 10% capacity based on the capacity of last derated. By analogy, the maximum derating capacity of the module is 50%, but when the temperature is less than 85°C, the module will automatically back to the original rated capacity.	Disable Enable	Enable	N/A
	Detect temperature monitoring Detect temperature Monitoring Detect temperature Monitoring Sic temperature monitoring Detect temperature Monitoring Detect temperature Monitoring Sic temperature monitoring Detect temperature of the Sic Monitoring and last derated. (The maximum derating capacity of the module is 50%) Take AHF 150A as example, when the temperature of the Sic Monitoring and lasts 10 minutes, it will reduce 10% capacity, then the AHF capacity is 135A. AHF will detect the temperature again, if the temperature is still rising and lasts time is 10 minutes, it will reduce 10% capacity again, then the AHF capacity is 120A. If temperature reduce to 85 °C after derating, the AHF capacity will			

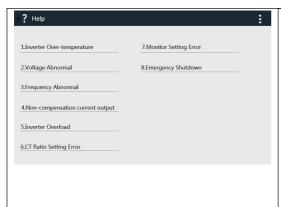
Constant	This function is only used for SVG. This function could make SVG generate constant reactive power to	[-3000, 3000] (+) Inductive	0.0	kvar
reactive	the grid. No need of CT, because it's output reactive power is constant.	(-) Capacitive		
	RP Tracking Ctrl Val means "Reactive Power Tracking Control Value".			
RP Tracking Ctrl. Val	This parameter can be set to output either a constant inductive or capacitive reactive power into the system, before the system will perform its normal reactive power compensation function, as required by the load. This function can be used to compensate for the reactive power generated by the SVG itself or to compensate for magnetising reactive power required by the upstream transformer, typically when the utility meter the client on the primary side of transformer, but SVG system is installed on secondary side. A transformer magnetising current should be inductive, so to compensate for the inductive reactive power, the RP Tracking Ctrl Val should be set to output capacitive reactive power.	[-3000, 3000] (+) Inductive (-) Capacitive	0.0	kvar
	(Under normal operation, and if value is set at "0.0" the SVG will compensate for the reactive power required by the load. If target for cos phi is set at 0.99 for the LV side, the cos phi might be 0.97 on the MV side where the client is metered. The RP Tracking Ctrl Val setting will allow SVG to output a constant cos phi to compensate for the additional reactive power required by the transformer, before performing its normal Reactive power compensation.) The setting therefore improves the Power Factor at the metered point with lower kVA demand and reactive energy charges.			
	(For example: A value of -7.5 will output 7.5kVAr of Capacitive Reactive Power into the system constantly before the SVG compensate for the reactive power required by the load)			

PARAMETER SETTING

The table below are parameters needed to set up MTE 7-inch HMI;

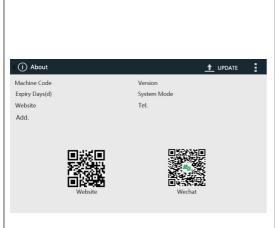
Table 3-7 Parameter setting in HMI

Operation Mode
Total Capacity
Comp. Rate
Comp. Mode
CT Ratio
Power On Mode
Slave Module Quantity
CT Location


Take one 500A AHF system for example. Assuming this system contains five AHF 100A modules and uses 7-inch HMI for monitoring. The CT ratio is 3000:5.

In this case, before module power on, the quick commission should be:

Table 3-8 Case demonstration


Setting	Setting parameters
Operation Mode	Harmonic comp.
Total Capacity	500
Comp. Rate	1.0
Comp. Mode	Intelligent
CT Ratio	3000
Power On Mode	Manual or auto
Slave Module Quantity	5
CT Location	Based on site

HELP

There are eight common types of alarms, for detailed explanations, please refer to Appendix X.

ABOUT

The system software version information

For example:
Machine Cod 000000
Version M317D000B000 (M: Monitor version, D:DSP version)
System Mode 380-0/0-4-0
Expiry Days(d) Forever

TABLE OF CONTENTS

DOCUMENT REVISION

Revision	Date	Revised Content
V1	2025/09/23	First Version

MTE reserves the right to make modification to the device or the unit specifications set out in the user manual without prior notice.